Jackson Theorem and Modulus of Continuity
For the generalized moduli of continuity, including both the ordinary moduli of continuity and various their modifications, we establish the exact constants for Jackson-type inequalities on the classes of 2π -periodic functions in the space L 2 with (ψ, β) -derivatives introduced by Stepanets. These results take into account the classification of (ψ, β) -derivatives and enable us to consider the major part of Jackson-type inequalities obtained earlier in the classes of differentiable functions L r 2 , r ∈ ℕ, from the common point of view.
References
-
D. Jackson, Uber die Genauigkeit des Annaherung Stetigen Funktionen Durch Ganze Rationale Funktionen Gegebenen Grades und Trigonometrischen Summen Gegebener Ordnung, Dissertation, Göttingen (1911).
-
D. Jackson, "Some note of trigonometric interpolation," Amer. Math. Mon., 34, 401–405 (1927).
-
S. B. Stechkin, "On the order of the best approximations of continuous functions," Izv. Akad. Nauk SSSR, Ser. Mat., 15, No. 3, 219–242 (1951).
-
V. I. Ivanov and O. I. Smirnov, Jackson and Young Constants in the Space L p [in Russian], Tula University, Tula (1995).
-
N. P. Korneichuk, "Exact constant in the Jackson theorem on the best uniform approximation of continuous periodic functions," Dokl. Akad. Nauk SSSR, 145, No. 3, 514–515 (1962).
-
N. I. Chernykh, "On the best approximation of periodic functions by trigonometric polynomials in L 2 ," Mat. Zametki, 2, No. 5, 513–522 (1967).
-
V. A. Yudin, "Multidimensional Jackson theorem," Mat. Zametki, 20, No. 3, 439–444 (1967).
-
N. I. Chernykh, "Jackson inequality in L p (0, 2π) (1 ≤ p < 2) with exact constant," Tr. Mat. Inst. Ros. Akad. Nauk, 198, 232–241 (1992).
-
V. I. Berdyshev, "On the Jackson theorem in L p ," Tr. Mat. Inst. Ros. Akad. Nauk, 88, 3–16 (1967).
-
L. V. Taikov, "Inequalities containing the best approximations and the modulus of continuity of functions from L 2 ," Mat. Zametki, 22, No. 3, 433–438 (1976).
-
L. V. Taikov, "Structural and constructive characteristics of functions from L 2 ," Mat. Zametki, 25, No. 2, 217–223 (1979).
-
A. A. Ligun, "Some inequalities between the best approximations and the moduli of continuity in the space L 2 ," Mat. Zametki, 24, No. 6, 785–792 (1978).
-
V. A. Yudin, "Diophantine approximations in extremal problems in L 2 ," Dokl. Akad. Nauk SSSR, 251, No. 1, 54–57 (1980).
-
V. V. Arestov and N. I. Chernykh, "On the L 2-approximation of periodic function by trigonometric polynomials," in: Approximation and Function Spaces: Proc. of the Internat. Conf., (Gdansk, August 27–31, 1979), Polish Scientific Publishers, Warszawa (1981), pp. 25–43.
-
V. V. Zhuk, "On some exact inequalities between the best approximations and moduli of continuity" Sib. Mat. Zh., 12, No. 6, 1283–1291 (1971).
-
A. G. Babenko, "On the exact constant for the Jackson inequality in L 2 ," Mat. Zametki, 39, No. 5, 651–664 (1986).
-
V. I. Ivanov, "On the relationship between the Jackson and Young constants in the space L p ," Mat. Zametki, 58, No. 6, 828–836 (1995).
-
V. V. Shalaev, "Widths in L 2 of the classes of differentiable functions defined by higher-order moduli of continuity," Ukr. Mat. Zh., 43, No. 1, 125–129 (1991); English translation: Ukr. Math. J., 43, No. 1, 104–107 (1991).
-
M. G. Esmaganbetov, "Widths of the classes from L 2[0, 2π] and the minimization of exact constants in Jackson-type inequalities," Mat. Zametki, 65, No. 6, 816–820 (1999).
-
A. I. Stepanets and A. S. Serdyuk, "Direct and inverse theorems in the theory of approximation of functions in the space S p ," Ukr. Mat. Zh., 54, No. 1, 106–124 (2002); English translation: Ukr. Math. J., 54, No. 1, 126–148 (2002).
-
S. B. Vakarchuk and A. N. Shchitov, "Best polynomial approximations in L 2 and the widths of some classes of functions," Ukr. Mat. Zh., 56, No 11, 1458–1466 (2004); English translation: Ukr. Math. J., 56, No 11, 1738–1747 (2004).
-
E. E. Berdysheva, "Optimal set of the modulus of continuity in the exact Jackson inequality in the space L 2 ," Mat. Zametki, 76, No. 5, 666–674 (2004).
-
S. B. Vakarchuk, "Jackson-type inequalities and the widths of classes of functions in L 2 ," Mat. Zametki, 80, No. 1, 11–19 (2006).
-
M. Sh. Shabozov and G. A. Yusupov, "Best polynomial approximations in L 2 for some classes of 2π-periodic functions and the exact values of their widths," Mat. Zametki, 90, No. 5, 761–772 (2011).
-
V. A. Abilov and F. V. Abilova, "Some problems of approximation of 2π-periodic functions by Fourier sums in the space L 2(2π)," Mat. Zametki, 76, No. 6, 803–811 (2004).
-
S. B. Vakarchuk and V. I. Zabutnaya, "Exact Jackson–Stechkin-type inequality in L 2 and the widths of functional classes," Mat. Zametki, 86, No. 3, 328–336 (2009).
-
M. Sh. Shabozov and G. A. Yusupov, "Exact constants in Jackson-type inequalities and exact values of widths for some classes of functions in L 2 ," Sib. Mat. Zh., 52, No. 6, 1414–1427 (2011).
-
S. B. Vakarchuk and V. I. Zabutnaya, "Jackson–Stechkin-type inequalities for special moduli of continuity and the widths of functional classes in the space L 2 ," Mat. Zametki, 92, No. 4, 497–514 (2012).
-
S. B. Vakarchuk and V. I. Zabutnaya, "On the best polynomial approximation in the space L 2 and the widths of some classes of functions," Ukr. Mat. Zh., 64, No. 8, 1025–1032 (2012); English translation: Ukr. Math. J., 64, No. 8, 1168–1176 (2013).
-
V. N. Vasil'ev, "Exact Jackson–Stechkin inequality in L 2 with the modulus of continuity generated by a finite-difference operator with constant coefficients," Dokl. Ros. Akad. Nauk, 385, No. 1, 11–14 (2002).
-
A. N. Kozko and A. V. Rozhdestvenskii, "On the Jackson inequality with generalized modulus of continuity," Mat. Zametki, 73, No. 5, 783–788 (2003).
-
H. S. Shapiro, "A Tauberian theorem related to approximation theory," Acta Math., 120, 279–292 (1968).
-
J. Boman and H. S. Shapiro, "Comparison theorems for a generalized modulus of continuity," Ark. Mat., 9, No. 1, 91–116 (1971).
-
J. Boman, "Equivalence of generalized moduli of continuity," Ark. Mat., 18, No. 1, 73–100 (1980).
-
A. I. Stepanets, "Classification of periodic functions and the rate of convergence of their Fourier series," Izv. Akad. Nauk SSSR, Ser. Mat., 50, No. 1, 101–136 (1986).
-
A. I. Stepanets, Methods of Approximation Theory [in Russian], Vol. 1, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2002).
-
A. I. Stepanets, A. S. Serdyuk, and A. L. Shidlich, "Classification of infinitely differentiable periodic functions," Ukr. Mat. Zh., 60, No. 12, 1686–1708 (2008); English translation: Ukr. Math. J., 60, No. 12, 1982–2005 (2008).
-
A. I. Stepanets, A. S. Serdyuk, and A. L. Shidlich, "On relationship between the classes of (ψ, β)-differentiable functions and Gevrey classes," Ukr. Mat. Zh., 61, No. 1, 140–145 (2009); English translation: Ukr. Math. J., 61, No. 1, 171–177 (2009).
-
A. S. Romanyuk, Best Approximations and Widths for the Classes of Periodic Functions of Many Variables [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Kiev (1988).
-
V. G. Doronin and L. M. Bozhukha, "Generalization of some Jackson-type inequalities in the space L 2 ," Visn. Dnipropetr. Univ., Ser. Mat., No. 6, 58–62 (2001).
-
A. S. Serdyuk, "Widths in the space S p of classes of functions defined by the moduli of continuity of their ψ-derivatives" in: Extremal Problems of the Theory of Functions and Related Problems [in Ukrainian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, 46 (2003), pp. 229–248.
-
A. Pinkus, n-Widths in Approximation Theory, Springer, Berlin (1985).
-
Kh. Yussef, "On the best approximations of functions and the values of widths for the classes of functions in L 2 ," in: Applications of Functional Analysis to Approximation Theory [in Russian], Kalininskii Univ., Kalinin (1988), pp. 100–114.
-
S. N. Vasil'ev, Approximation of Functions by Trigonometric Polynomials in L 2 and by Fractal Functions in C [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Ekaterinburg (2002).
-
N. P. Korneichuk, Extremal Problems of Approximation Theory [in Russian], Nauka, Moscow (1976).
-
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series [in Russian], Vol. 1, Nauka, Moscow (1981).
Author information
Authors and Affiliations
Additional information
Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 68, No. 6, pp. 723–745, June, 2016.
About this article
Cite this article
Vakarchuk, S.B. Jackson-Type Inequalities with Generalized Modulus of Continuity and Exact Values of the n-Widths for the Classes of (ψ, β)-Differentiable Functions in L 2. I. Ukr Math J 68, 823–848 (2016). https://doi.org/10.1007/s11253-016-1260-z
-
Received:
-
Published:
-
Issue Date:
-
DOI : https://doi.org/10.1007/s11253-016-1260-z
Source: https://link.springer.com/article/10.1007/s11253-016-1260-z
0 Response to "Jackson Theorem and Modulus of Continuity"
Post a Comment